При поиске работы на распределение учебного заведения рассчитывают лишь 4 %, тогда как учебные заведения дают более высокий процент.
ПодробноСоциализация охватывает все процессы приобщения к культуре, обучения и воспитания, с помощью которых человек приобретает социальную природу.
ПодробноДетская беспризорность – социальное явление, при котором происходит отрыв детей от семьи с утратой постоянного места жительства.
ПодробноИзучением феномена социального настроения занимались многие ученые в рамках различных направлений социологии и психологии.
Подробно.
Статистика
(1.9.26)
подчиняется закону распределения Стьюдента с v = n—1 степенями свободы. Однако при больших значениях параметра v (v ≥ 30) распределение Стьюдента практически совпадает с нормальным. Поэтому в случае больших выборок схема решения задач остается прежней, даже если вместо 'Неизве стного генерального среднего квадратического отклонения а используется его выборочная оценка s.
3.5.2. Малая выборка
Если генеральная совокупность подчинена нормальному закону распределения (что на практике имеет место очень часто), то выборочная средняя как средняя арифметическая п нормально распределенных случайных величин также имеет нормальный закон распределения. Таким образом, величина распределена по стандартному нормальному закону, и схема решения задач при известном генеральном среднем квадратическом отклонении σ остается прежней.
Если же генеральное среднее квадратическое отклонение σ неизвестно и приходится пользоваться его выборочной оценкой s, то используется статистика t (1.9.26), которая, как мы уже отмечали, подчинена закону распределения Стьюдента с v = n—1 степенями свободы. При v < 30 имеются значительные различия между распределением Стьюдента и нормальным распределением (тем более значительные, чем меньше v). Используя функцию распределения Стьюдента, мы можем записать равенство, аналогичное формуле Лапласа:
(1.9.27)
где S(t, v) — функция Стьюдента, значения которой для различных значений t
и v подробно рассчитаны и представлены в специальных таблицах.
Выражение (
1.9.27)
эквивалентно выражению:
(1.9.28)
где
Решение задач с помощью этого равенства аналогично решению задач с использованием формулы Лапласа. Лишь определение п несколько усложняется из-за того, что оно входит также в параметр v = n—1.
Поэтому можно воспользоваться схемой последовательных приближений. Вначале производят оценку (s2) генеральной дисперсии. Затем находят п1 по схеме (1.9.25), используя таблицу функции Лапласа и принимая σ2 = s2- По найденному n1 и, соответственно, v1 = n1 — 1 и заданному значению
Р=1—α определяют t1 (по таблице распределения Стьюдента) и вычисляют и так далее.
Теперь можно снова повторить расчет по v2 = n2 — 1 и т.д.
Итерация заканчивается, если окажется ni ≈ ni-1.
Пример 1.9.7.
Для определения среднего заработка работника за день при соблюдении необходимых условий было отобрано 10 работников, заработок которых оказался равным (в руб.): 325; 337; 319; 330; 327; 328; 332; 320; 318; 334. Требуется определить с вероятностью 0,95 доверительный интервал для среднего заработка работников в генеральной совокупности, если есть основания полагать, что заработная плата в генеральной совокупности подчиняется нормальному закону определения.
Решение:
По данным выборки определяем среднюю и дисперсию. Получаем
;
Рассчитываем несмещенную оценку генеральной дисперсии
Предположение о нормальном характере генерального распределения позволяет нам использовать равенства (1.9.27) и (1.9.28). Обращаясь к таблице значений функции Стьюдента, по заданным P = 2S(t, v)=0,95 и v = n—1 = 10 – 1 = 9 находим t = 2,26.
Вычисляем предельную ошибку выборки ε=(кг).