Service 01

Молодежь
на рынке труда

При поиске работы на распределение учебного заведения рассчитывают лишь 4 %, тогда как учебные заведения дают более высокий процент.

Подробно
Service 02

Сущность
социализации

Социализация охватывает все процессы приобщения к культуре, обучения и воспитания, с помощью которых человек приобретает социальную природу.

Подробно
Service 03

Беспризорность
сущность и причины

Детская беспризорность – социальное явление, при котором происходит отрыв детей от семьи с утратой постоянного места жительства.

Подробно
Service 04

Социальное
настроение

Изучением феномена социального настроения занимались многие ученые в рамках различных направлений социологии и психологии.

Подробно

Разделы

Статистические оценки

Одна из важных задач математической статистики заключается в том, чтобы по данным случайной выборки оценить достаточно точно значения характеристик генерального распределения, как, например, долю признака, среднюю, дисперсию и т. д. Задачу об оценке можно разделить на две части: какую величину, подсчитанную по выборке, принять в качестве приближенного значения характеристики генерального распределения (точечная оценка), и в каком интервале вокруг этой величины будет заключена с заданной надежностью искомая характеристика (интервальная оценка).

Пусть генеральное распределение задается некоторой функцией F(x,ξ1,…,ξк), где ξ1,…,ξк - его параметры. Например, если распределение задается двумя параметрами ξ1 и ξ2, то ξ1 обычно характеризует среднюю, а ξ2- дисперсию (или среднее квадратическое отклонение) генерального распределения.

Случайный отбор позволяет выборку объема п рассматривать как п повторных испытаний. Результат каждого испытания (j-го единичного отбора) есть случайная величина Хj, а вся выборка — совокупность п случайных величин {Х1, … Хj, ., Хп} Любая конкретная выборка (х1, ., хi, ., хп) есть реализация этой совокупности случайных величин.

Для оценки неизвестного параметра ξ генеральной совокупности введем некоторую величину θ, вычисляемую по результатам выборки, т. е.

θ = θ (X1, ., Хj, ., Хп),

называемую статистикой.

Так, если для оценки генеральной средней ξ = выбрана статистика θ = Х* — выборочная средняя, то ее значения могут быть подсчитаны по результатам выборки как

Если для оценки генеральной дисперсии D выбрана статистика θ =D* — выборочная дисперсия, то ее значения могут быть рассчитаны по формуле

Статистика θ есть случайная величина. В ряде случаев можно найти ее распределение.

Статистическая оценка должна быть возможно более точной. С этой целью к статистике θ предъявляются требования:

1) состоятельности,

2) несмещенности,

3) эффективности.

1) Свойство состоятельности означает, что распределение статистики θ с ростом объема выборки п концентрируется в сколь угодно малое окрестности параметра ξ (статистика θ стремится по вероятности к оцениваемому параметру ξ). Свойство состоятельности выражается предельным равенством: для любого столь угодно малого положительного числа ε

(1.9.1)

Свойство состоятельности может быть выражено двумя более жесткими требованиями, которые являются достаточными условиями состоятельности и которые легче поддаются практической проверке:

и (1.9.2)

2) Свойство несмещенности означает, что при любом конечном объеме выборки п

центр рассеяния статистики θ (математическое ожидание случайной величины θ) совпадает со значением оцениваемого параметра генеральной совокупности:

М(θ) = ξ — для любого п. (1.9.3)

Рис. 1.9.1. Иллюстрация свойств состоятельности

Естественно, что при заданном конечном объеме выборки п из различных возможных статистик для оценки параметра ξ следует выбрать ту статистику, которая, являясь несмещенной, обладает в то же время минимальным рассеянием, т.е. имеет минимальную дисперсию. Последнее свойство получило название эффективности.

Рис. 1.9.2. Сравнение свойств трех статистик

Перейти на страницу: 1 2 3